Step
*
2
1
of Lemma
unshuffle-odd-length
1. f : ℕ ⟶ Top
2. m : ℕ
3. ∀m:ℕm. ∀[L:ℕ List]. ∀[x:ℕ]. unshuffle(map(f;L @ [x])) ~ unshuffle(map(f;L)) supposing ||L|| = (2 * m) ∈ ℤ
4. u : ℕ
5. u1 : ℕ
6. v : ℕ List
7. x : ℕ
8. ||[u; [u1 / v]]|| = (2 * m) ∈ ℤ
⊢ (||map(f;v @ [x])|| + 1) + 1 <z 2 ~ (||map(f;v)|| + 1) + 1 <z 2
BY
{ (GenConclTerms Auto [⌜||map(f;v @ [x])||⌝;⌜||map(f;v)||⌝]⋅ THEN All Thin) }
1
1. v1 : ℕ
2. v2 : ℕ
⊢ (v1 + 1) + 1 <z 2 ~ (v2 + 1) + 1 <z 2
Latex:
Latex:
1. f : \mBbbN{} {}\mrightarrow{} Top
2. m : \mBbbN{}
3. \mforall{}m:\mBbbN{}m
\mforall{}[L:\mBbbN{} List]. \mforall{}[x:\mBbbN{}]. unshuffle(map(f;L @ [x])) \msim{} unshuffle(map(f;L)) supposing ||L|| = (2 * m)
4. u : \mBbbN{}
5. u1 : \mBbbN{}
6. v : \mBbbN{} List
7. x : \mBbbN{}
8. ||[u; [u1 / v]]|| = (2 * m)
\mvdash{} (||map(f;v @ [x])|| + 1) + 1 <z 2 \msim{} (||map(f;v)|| + 1) + 1 <z 2
By
Latex:
(GenConclTerms Auto [\mkleeneopen{}||map(f;v @ [x])||\mkleeneclose{};\mkleeneopen{}||map(f;v)||\mkleeneclose{}]\mcdot{} THEN All Thin)
Home
Index