Step
*
of Lemma
exp_preserves_lt
∀[n:ℕ+]. ∀[x,y:ℕ]. x^n < y^n supposing x < y
BY
{ (InductionOnNat
THEN Reduce 0
THEN Auto
THEN RWO "exp1 exp_step" 0
THEN Auto
THEN (Assert x^n < y^n BY
(BackThruSomeHyp THEN Auto))) }
1
1. n : ℤ@i
2. 0 < n
3. ∀[x,y:ℕ]. x^n < y^n supposing x < y@i
4. x : ℕ
5. y : ℕ
6. x < y
7. x^n < y^n
⊢ x * x^(n + 1) - 1 < y * y^(n + 1) - 1
Latex:
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}]. \mforall{}[x,y:\mBbbN{}]. x\^{}n < y\^{}n supposing x < y
By
Latex:
(InductionOnNat
THEN Reduce 0
THEN Auto
THEN RWO "exp1 exp\_step" 0
THEN Auto
THEN (Assert x\^{}n < y\^{}n BY
(BackThruSomeHyp THEN Auto)))
Home
Index