Step
*
of Lemma
general-iroot-property
∀[n:ℕ+]. ∀[x:ℤ].
(((0 ≤ x)
⇒ ((general-iroot(n;x)^n ≤ x) ∧ x < (general-iroot(n;x) + 1)^n))
∧ ((x < 0 ∧ ((n mod 2) = 1 ∈ ℤ))
⇒ ((x ≤ general-iroot(n;x)^n) ∧ (general-iroot(n;x) - 1)^n < x))
∧ ((x < 0 ∧ ((n mod 2) = 0 ∈ ℤ))
⇒ (general-iroot(n;x) = 0 ∈ ℤ)))
BY
{ TACTIC:((RepeatFor 2 ((D 0 THENA Auto)) THEN SplitAndConcl THEN (D 0 THENA Auto))
THEN Unfold `general-iroot` 0
THEN RepeatFor 2 ((CallByValueReduce 0 THENA Auto))
THEN AutoSplit) }
1
1. n : ℕ+
2. x : ℤ
3. x < 0 ∧ ((n mod 2) = 1 ∈ ℤ)
4. x < 0
⊢ (x ≤ if n mod 2=1 then TERMOF{integer-nth-root2:o, 1:l} n x else 0^n)
∧ (if n mod 2=1 then TERMOF{integer-nth-root2:o, 1:l} n x else 0 - 1)^n < x
Latex:
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}]. \mforall{}[x:\mBbbZ{}].
(((0 \mleq{} x) {}\mRightarrow{} ((general-iroot(n;x)\^{}n \mleq{} x) \mwedge{} x < (general-iroot(n;x) + 1)\^{}n))
\mwedge{} ((x < 0 \mwedge{} ((n mod 2) = 1)) {}\mRightarrow{} ((x \mleq{} general-iroot(n;x)\^{}n) \mwedge{} (general-iroot(n;x) - 1)\^{}n < x))
\mwedge{} ((x < 0 \mwedge{} ((n mod 2) = 0)) {}\mRightarrow{} (general-iroot(n;x) = 0)))
By
Latex:
TACTIC:((RepeatFor 2 ((D 0 THENA Auto)) THEN SplitAndConcl THEN (D 0 THENA Auto))
THEN Unfold `general-iroot` 0
THEN RepeatFor 2 ((CallByValueReduce 0 THENA Auto))
THEN AutoSplit)
Home
Index