Step
*
of Lemma
isOdd-sum
No Annotations
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  uiff(↑isOdd(Σ(f[x] | x < n));↑isOdd(||filter(λx.isOdd(f[x]);upto(n))||))
BY
{ (InductionOnNat THENL [(Reduce 0 THEN Auto); (D 0 THENA Auto)]) }
1
1. n : ℤ
2. 0 < n
3. ∀[f:ℕn - 1 ⟶ ℤ]. uiff(↑isOdd(Σ(f[x] | x < n - 1));↑isOdd(||filter(λx.isOdd(f[x]);upto(n - 1))||))
4. f : ℕn ⟶ ℤ
⊢ uiff(↑isOdd(Σ(f[x] | x < n));↑isOdd(||filter(λx.isOdd(f[x]);upto(n))||))
Latex:
Latex:
No  Annotations
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    uiff(\muparrow{}isOdd(\mSigma{}(f[x]  |  x  <  n));\muparrow{}isOdd(||filter(\mlambda{}x.isOdd(f[x]);upto(n))||))
By
Latex:
(InductionOnNat  THENL  [(Reduce  0  THEN  Auto);  (D  0  THENA  Auto)])
Home
Index