Step
*
2
1
1
1
of Lemma
olympiad-problem-six
1. k : ℤ
2. a : ℕ
3. ∀a:ℕa. ∀b:ℕ. ((((a * a) + (b * b)) = (k * ((a * b) + 1)) ∈ ℤ)
⇒ (∃n:ℤ. (k = (n * n) ∈ ℤ)))
4. b : ℕ
5. ((a * a) + (b * b)) = (k * ((a * b) + 1)) ∈ ℤ
6. ¬b < a
7. ¬(a = 0 ∈ ℤ)
8. 0 ≤ (a * a)
9. 0 ≤ (b * b)
10. 0 ≤ k
11. ¬(k = 0 ∈ ℤ)
12. v : ℤ
13. ((k * a) - b) = v ∈ ℤ
14. ((v * v) + (a * a)) = (k * ((v * a) + 1)) ∈ ℤ
15. (b * v) = ((a * a) - k) ∈ ℤ
16. 1 ≤ a
17. (a * 1) ≤ (a * a)
18. 0 ≤ (v * v)
19. 1 ≤ (k * ((v * a) + 1))
⊢ 0 ≤ v
BY
{ ((Mul ⌜a⌝ 0⋅ THEN Auto) THEN SupposeNot) }
1
1. k : ℤ
2. a : ℕ
3. ∀a:ℕa. ∀b:ℕ. ((((a * a) + (b * b)) = (k * ((a * b) + 1)) ∈ ℤ)
⇒ (∃n:ℤ. (k = (n * n) ∈ ℤ)))
4. b : ℕ
5. ((a * a) + (b * b)) = (k * ((a * b) + 1)) ∈ ℤ
6. ¬b < a
7. ¬(a = 0 ∈ ℤ)
8. 0 ≤ (a * a)
9. 0 ≤ (b * b)
10. 0 ≤ k
11. ¬(k = 0 ∈ ℤ)
12. v : ℤ
13. ((k * a) - b) = v ∈ ℤ
14. ((v * v) + (a * a)) = (k * ((v * a) + 1)) ∈ ℤ
15. (b * v) = ((a * a) - k) ∈ ℤ
16. 1 ≤ a
17. (a * 1) ≤ (a * a)
18. 0 ≤ (v * v)
19. 1 ≤ (k * ((v * a) + 1))
20. ¬((a * 0) ≤ (a * v))
⊢ (a * 0) ≤ (a * v)
Latex:
Latex:
1. k : \mBbbZ{}
2. a : \mBbbN{}
3. \mforall{}a:\mBbbN{}a. \mforall{}b:\mBbbN{}. ((((a * a) + (b * b)) = (k * ((a * b) + 1))) {}\mRightarrow{} (\mexists{}n:\mBbbZ{}. (k = (n * n))))
4. b : \mBbbN{}
5. ((a * a) + (b * b)) = (k * ((a * b) + 1))
6. \mneg{}b < a
7. \mneg{}(a = 0)
8. 0 \mleq{} (a * a)
9. 0 \mleq{} (b * b)
10. 0 \mleq{} k
11. \mneg{}(k = 0)
12. v : \mBbbZ{}
13. ((k * a) - b) = v
14. ((v * v) + (a * a)) = (k * ((v * a) + 1))
15. (b * v) = ((a * a) - k)
16. 1 \mleq{} a
17. (a * 1) \mleq{} (a * a)
18. 0 \mleq{} (v * v)
19. 1 \mleq{} (k * ((v * a) + 1))
\mvdash{} 0 \mleq{} v
By
Latex:
((Mul \mkleeneopen{}a\mkleeneclose{} 0\mcdot{} THEN Auto) THEN SupposeNot)
Home
Index