Step
*
1
1
of Lemma
polymorphic-choice-sq
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
⊢ if f 0 1=0 then tt else ff ∈ (f ~ λx.if f x is lambda then λy.x otherwise ⊥) ∨ (f ~ λx,y. y)
BY
{ PointwiseFunctionality (-1) }
1
1. [a] : Base
2. [b] : Base
3. [c] : a = b ∈ (⋂A:Type. (A ⟶ A ⟶ A))
⊢ if a 0 1=0 then tt else ff ∈ (a ~ λx.if a x is lambda then λy.x otherwise ⊥) ∨ (a ~ λx,y. y)
2
1. a : Base
2. b : Base
3. c : a = b ∈ (⋂A:Type. (A ⟶ A ⟶ A))
⊢ (if a 0 1=0 then tt else ff ∈ (a ~ λx.if a x is lambda then λy.x otherwise ⊥) ∨ (a ~ λx,y. y))
= (if b 0 1=0 then tt else ff ∈ (b ~ λx.if b x is lambda then λy.x otherwise ⊥) ∨ (b ~ λx,y. y))
∈ Type
Latex:
Latex:
1.  f  :  \mcap{}A:Type.  (A  {}\mrightarrow{}  A  {}\mrightarrow{}  A)
\mvdash{}  if  f  0  1=0  then  tt  else  ff  \mmember{}  (f  \msim{}  \mlambda{}x.if  f  x  is  lambda  then  \mlambda{}y.x  otherwise  \mbot{})  \mvee{}  (f  \msim{}  \mlambda{}x,y.  y)
By
Latex:
PointwiseFunctionality  (-1)
Home
Index