Step
*
2
1
of Lemma
search_property
1. k : ℤ
2. [%1] : 0 < k
3. ∀P:ℕk - 1 ⟶ 𝔹
((∃i:ℕk - 1. (↑(P i))
⇐⇒ 0 < search(k - 1;P))
∧ (↑(P (search(k - 1;P) - 1))) ∧ (∀j:ℕk - 1. ¬↑(P j) supposing j < search(k - 1;P) - 1)
supposing 0 < search(k - 1;P))
4. P : ℕk ⟶ 𝔹
5. (∃i:ℕk - 1. (↑(P i))
⇐⇒ 0 < search(k - 1;P))
∧ (↑(P (search(k - 1;P) - 1))) ∧ (∀j:ℕk - 1. ¬↑(P j) supposing j < search(k - 1;P) - 1) supposing 0 < search(k - 1;P)
⊢ (∃i:ℕk. (↑(P i))
⇐⇒ 0 < search(k;P))
∧ (↑(P (search(k;P) - 1))) ∧ (∀j:ℕk. ¬↑(P j) supposing j < search(k;P) - 1) supposing 0 < search(k;P)
BY
{ (Decide ∃i:ℕk - 1. (↑(P i)) THENA Auto) }
1
1. k : ℤ
2. [%1] : 0 < k
3. ∀P:ℕk - 1 ⟶ 𝔹
((∃i:ℕk - 1. (↑(P i))
⇐⇒ 0 < search(k - 1;P))
∧ (↑(P (search(k - 1;P) - 1))) ∧ (∀j:ℕk - 1. ¬↑(P j) supposing j < search(k - 1;P) - 1)
supposing 0 < search(k - 1;P))
4. P : ℕk ⟶ 𝔹
5. (∃i:ℕk - 1. (↑(P i))
⇐⇒ 0 < search(k - 1;P))
∧ (↑(P (search(k - 1;P) - 1))) ∧ (∀j:ℕk - 1. ¬↑(P j) supposing j < search(k - 1;P) - 1) supposing 0 < search(k - 1;P)
6. ∃i:ℕk - 1. (↑(P i))
⊢ (∃i:ℕk. (↑(P i))
⇐⇒ 0 < search(k;P))
∧ (↑(P (search(k;P) - 1))) ∧ (∀j:ℕk. ¬↑(P j) supposing j < search(k;P) - 1) supposing 0 < search(k;P)
2
1. k : ℤ
2. [%1] : 0 < k
3. ∀P:ℕk - 1 ⟶ 𝔹
((∃i:ℕk - 1. (↑(P i))
⇐⇒ 0 < search(k - 1;P))
∧ (↑(P (search(k - 1;P) - 1))) ∧ (∀j:ℕk - 1. ¬↑(P j) supposing j < search(k - 1;P) - 1)
supposing 0 < search(k - 1;P))
4. P : ℕk ⟶ 𝔹
5. (∃i:ℕk - 1. (↑(P i))
⇐⇒ 0 < search(k - 1;P))
∧ (↑(P (search(k - 1;P) - 1))) ∧ (∀j:ℕk - 1. ¬↑(P j) supposing j < search(k - 1;P) - 1) supposing 0 < search(k - 1;P)
6. ¬(∃i:ℕk - 1. (↑(P i)))
⊢ (∃i:ℕk. (↑(P i))
⇐⇒ 0 < search(k;P))
∧ (↑(P (search(k;P) - 1))) ∧ (∀j:ℕk. ¬↑(P j) supposing j < search(k;P) - 1) supposing 0 < search(k;P)
Latex:
Latex:
1. k : \mBbbZ{}
2. [\%1] : 0 < k
3. \mforall{}P:\mBbbN{}k - 1 {}\mrightarrow{} \mBbbB{}
((\mexists{}i:\mBbbN{}k - 1. (\muparrow{}(P i)) \mLeftarrow{}{}\mRightarrow{} 0 < search(k - 1;P))
\mwedge{} (\muparrow{}(P (search(k - 1;P) - 1))) \mwedge{} (\mforall{}j:\mBbbN{}k - 1. \mneg{}\muparrow{}(P j) supposing j < search(k - 1;P) - 1)
supposing 0 < search(k - 1;P))
4. P : \mBbbN{}k {}\mrightarrow{} \mBbbB{}
5. (\mexists{}i:\mBbbN{}k - 1. (\muparrow{}(P i)) \mLeftarrow{}{}\mRightarrow{} 0 < search(k - 1;P))
\mwedge{} (\muparrow{}(P (search(k - 1;P) - 1))) \mwedge{} (\mforall{}j:\mBbbN{}k - 1. \mneg{}\muparrow{}(P j) supposing j < search(k - 1;P) - 1)
supposing 0 < search(k - 1;P)
\mvdash{} (\mexists{}i:\mBbbN{}k. (\muparrow{}(P i)) \mLeftarrow{}{}\mRightarrow{} 0 < search(k;P))
\mwedge{} (\muparrow{}(P (search(k;P) - 1))) \mwedge{} (\mforall{}j:\mBbbN{}k. \mneg{}\muparrow{}(P j) supposing j < search(k;P) - 1)
supposing 0 < search(k;P)
By
Latex:
(Decide \mexists{}i:\mBbbN{}k - 1. (\muparrow{}(P i)) THENA Auto)
Home
Index