Step
*
2
1
1
of Lemma
sum-of-three-cubes-iff-4
1. k : ℕ
2. d : ℕ
3. n : ℕ
4. ((d * d) + (3 * n * n) rem 4) = 0 ∈ ℤ
5. c : ℤ
6. ((d * (((d * d) + (3 * n * n)) ÷ 4)) - k) = (c * c * c) ∈ ℤ
7. ∃c:ℤ. (((d * (((d * d) + (3 * n * n)) ÷ 4)) - k) = (c * c * c) ∈ ℤ)
⊢ ((4 * (((d * d) + (3 * n * n)) ÷ 4)) - d * d) = (3 * n * n) ∈ ℤ
BY
{ (MoveToConcl (-4) THEN (GenConclTerm ⌜(d * d) + (3 * n * n)⌝⋅ THENA Auto)) }
1
1. k : ℕ
2. d : ℕ
3. n : ℕ
4. c : ℤ
5. ((d * (((d * d) + (3 * n * n)) ÷ 4)) - k) = (c * c * c) ∈ ℤ
6. ∃c:ℤ. (((d * (((d * d) + (3 * n * n)) ÷ 4)) - k) = (c * c * c) ∈ ℤ)
7. v : ℤ
8. ((d * d) + (3 * n * n)) = v ∈ ℤ
⊢ ((v rem 4) = 0 ∈ ℤ)
⇒ (((4 * (v ÷ 4)) - d * d) = (3 * n * n) ∈ ℤ)
Latex:
Latex:
1. k : \mBbbN{}
2. d : \mBbbN{}
3. n : \mBbbN{}
4. ((d * d) + (3 * n * n) rem 4) = 0
5. c : \mBbbZ{}
6. ((d * (((d * d) + (3 * n * n)) \mdiv{} 4)) - k) = (c * c * c)
7. \mexists{}c:\mBbbZ{}. (((d * (((d * d) + (3 * n * n)) \mdiv{} 4)) - k) = (c * c * c))
\mvdash{} ((4 * (((d * d) + (3 * n * n)) \mdiv{} 4)) - d * d) = (3 * n * n)
By
Latex:
(MoveToConcl (-4) THEN (GenConclTerm \mkleeneopen{}(d * d) + (3 * n * n)\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index