Nuprl Lemma : accumulate_abort_nil_lemma
∀s,F:Top.  (accumulate_abort(x,y.F[x;y];s;[]) ~ s)
Proof
Definitions occuring in Statement : 
accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L)
, 
nil: []
, 
top: Top
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L)
, 
eager-accum: eager-accum(x,a.f[x; a];y;l)
, 
nil: []
, 
it: ⋅
, 
member: t ∈ T
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
sqequalRule, 
hypothesis, 
Error :inhabitedIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid
Latex:
\mforall{}s,F:Top.    (accumulate\_abort(x,y.F[x;y];s;[])  \msim{}  s)
Date html generated:
2019_06_20-PM-00_44_41
Last ObjectModification:
2019_01_29-AM-10_24_18
Theory : omega
Home
Index