Nuprl Lemma : accumulate_abort_nil_lemma

s,F:Top.  (accumulate_abort(x,y.F[x;y];s;[]) s)


Proof




Definitions occuring in Statement :  accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L) nil: [] top: Top so_apply: x[s1;s2] all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L) eager-accum: eager-accum(x,a.f[x; a];y;l) nil: [] it: member: t ∈ T
Lemmas referenced :  istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut sqequalRule hypothesis Error :inhabitedIsType,  hypothesisEquality introduction extract_by_obid

Latex:
\mforall{}s,F:Top.    (accumulate\_abort(x,y.F[x;y];s;[])  \msim{}  s)



Date html generated: 2019_06_20-PM-00_44_41
Last ObjectModification: 2019_01_29-AM-10_24_18

Theory : omega


Home Index