Step
*
1
2
2
2
2
1
1
of Lemma
add-ipoly-equiv
1. n : ℤ
2. 0 < n
3. ∀p,q:iMonomial() List.
(||p|| + ||q|| < n - 1
⇒ ipolynomial-term(add-ipoly(p;q)) ≡ ipolynomial-term(p) (+) ipolynomial-term(q))
4. u : iMonomial()
5. v : iMonomial() List
6. u1 : iMonomial()
7. ¬↑imonomial-le(u;u1)
8. v1 : iMonomial() List
9. ||[u / v]|| + ||[u1 / v1]|| < n
⊢ imonomial-term(u1) (+) (imonomial-term(u) (+) ipolynomial-term(v)) (+) ipolynomial-term(v1) ≡ (imonomial-term(u)
(+) ipolynomial-term(v))
(+) imonomial-term(u1)
(+) ipolynomial-term(v1)
BY
{ ((D 0 THEN Auto) THEN RepUR ``int_term_value`` 0 THEN Fold `int_term_value` 0 THEN Auto) }
Latex:
Latex:
1. n : \mBbbZ{}
2. 0 < n
3. \mforall{}p,q:iMonomial() List.
(||p|| + ||q|| < n - 1
{}\mRightarrow{} ipolynomial-term(add-ipoly(p;q)) \mequiv{} ipolynomial-term(p) (+) ipolynomial-term(q))
4. u : iMonomial()
5. v : iMonomial() List
6. u1 : iMonomial()
7. \mneg{}\muparrow{}imonomial-le(u;u1)
8. v1 : iMonomial() List
9. ||[u / v]|| + ||[u1 / v1]|| < n
\mvdash{} imonomial-term(u1) (+) (imonomial-term(u) (+) ipolynomial-term(v)) (+) ipolynomial-term(v1)
\mequiv{} (imonomial-term(u) (+) ipolynomial-term(v)) (+) imonomial-term(u1) (+) ipolynomial-term(v1)
By
Latex:
((D 0 THEN Auto) THEN RepUR ``int\_term\_value`` 0 THEN Fold `int\_term\_value` 0 THEN Auto)
Home
Index