Step
*
2
2
1
1
1
2
1
of Lemma
add-poly-lemma1
1. u2 : ℤ-o
2. u3 : {vs:ℤ List| sorted(vs)} 
3. v : iMonomial() List
4. ∀q:iMonomial() List. ∀m:iMonomial().
     ((∀i:ℕ||v||. ∀j:ℕi.  imonomial-less(v[j];v[i]))
     
⇒ (∀i:ℕ||q||. ∀j:ℕi.  imonomial-less(q[j];q[i]))
     
⇒ (0 < ||v|| 
⇒ imonomial-less(m;v[0]))
     
⇒ (0 < ||q|| 
⇒ imonomial-less(m;q[0]))
     
⇒ 0 < ||add-ipoly(v;q)||
     
⇒ imonomial-less(m;add-ipoly(v;q)[0]))
5. u4 : ℤ-o
6. u2 + u4 ≠ 0
7. u5 : {vs:ℤ List| sorted(vs)} 
8. v1 : iMonomial() List
9. ∀m:iMonomial()
     ((∀i:ℕ||v|| + 1. ∀j:ℕi.  imonomial-less([<u2, u3> / v][j];[<u2, u3> / v][i]))
     
⇒ (∀i:ℕ||v1||. ∀j:ℕi.  imonomial-less(v1[j];v1[i]))
     
⇒ (0 < ||v|| + 1 
⇒ imonomial-less(m;<u2, u3>))
     
⇒ (0 < ||v1|| 
⇒ imonomial-less(m;v1[0]))
     
⇒ 0 < ||add-ipoly([<u2, u3> / v];v1)||
     
⇒ imonomial-less(m;add-ipoly([<u2, u3> / v];v1)[0]))
10. m : iMonomial()
11. ∀i:ℕ||v|| + 1. ∀j:ℕi.  imonomial-less([<u2, u3> / v][j];[<u2, u3> / v][i])
12. ∀i:ℕ||v1|| + 1. ∀j:ℕi.  imonomial-less([<u4, u5> / v1][j];[<u4, u5> / v1][i])
13. 0 < ||v1|| + 1 
⇒ imonomial-less(m;<u4, u5>)
14. ↑imonomial-le(<u2, u3><u4, u5>)
15. ↑imonomial-le(<u4, u5><u2, u3>)
16. imonomial-less(m;<u2, u3>)
17. 0 < ||add-ipoly(v;v1)|| + 1
⊢ imonomial-less(m;<u2 + u4, u3>)
BY
{ (ParallelOp -2 THEN All Reduce THEN All (RepUR ``imonomial-le``) THEN Auto) }
Latex:
Latex:
1.  u2  :  \mBbbZ{}\msupminus{}\msupzero{}
2.  u3  :  \{vs:\mBbbZ{}  List|  sorted(vs)\} 
3.  v  :  iMonomial()  List
4.  \mforall{}q:iMonomial()  List.  \mforall{}m:iMonomial().
          ((\mforall{}i:\mBbbN{}||v||.  \mforall{}j:\mBbbN{}i.    imonomial-less(v[j];v[i]))
          {}\mRightarrow{}  (\mforall{}i:\mBbbN{}||q||.  \mforall{}j:\mBbbN{}i.    imonomial-less(q[j];q[i]))
          {}\mRightarrow{}  (0  <  ||v||  {}\mRightarrow{}  imonomial-less(m;v[0]))
          {}\mRightarrow{}  (0  <  ||q||  {}\mRightarrow{}  imonomial-less(m;q[0]))
          {}\mRightarrow{}  0  <  ||add-ipoly(v;q)||
          {}\mRightarrow{}  imonomial-less(m;add-ipoly(v;q)[0]))
5.  u4  :  \mBbbZ{}\msupminus{}\msupzero{}
6.  u2  +  u4  \mneq{}  0
7.  u5  :  \{vs:\mBbbZ{}  List|  sorted(vs)\} 
8.  v1  :  iMonomial()  List
9.  \mforall{}m:iMonomial()
          ((\mforall{}i:\mBbbN{}||v||  +  1.  \mforall{}j:\mBbbN{}i.    imonomial-less([<u2,  u3>  /  v][j];[<u2,  u3>  /  v][i]))
          {}\mRightarrow{}  (\mforall{}i:\mBbbN{}||v1||.  \mforall{}j:\mBbbN{}i.    imonomial-less(v1[j];v1[i]))
          {}\mRightarrow{}  (0  <  ||v||  +  1  {}\mRightarrow{}  imonomial-less(m;<u2,  u3>))
          {}\mRightarrow{}  (0  <  ||v1||  {}\mRightarrow{}  imonomial-less(m;v1[0]))
          {}\mRightarrow{}  0  <  ||add-ipoly([<u2,  u3>  /  v];v1)||
          {}\mRightarrow{}  imonomial-less(m;add-ipoly([<u2,  u3>  /  v];v1)[0]))
10.  m  :  iMonomial()
11.  \mforall{}i:\mBbbN{}||v||  +  1.  \mforall{}j:\mBbbN{}i.    imonomial-less([<u2,  u3>  /  v][j];[<u2,  u3>  /  v][i])
12.  \mforall{}i:\mBbbN{}||v1||  +  1.  \mforall{}j:\mBbbN{}i.    imonomial-less([<u4,  u5>  /  v1][j];[<u4,  u5>  /  v1][i])
13.  0  <  ||v1||  +  1  {}\mRightarrow{}  imonomial-less(m;<u4,  u5>)
14.  \muparrow{}imonomial-le(<u2,  u3><u4,  u5>)
15.  \muparrow{}imonomial-le(<u4,  u5><u2,  u3>)
16.  imonomial-less(m;<u2,  u3>)
17.  0  <  ||add-ipoly(v;v1)||  +  1
\mvdash{}  imonomial-less(m;<u2  +  u4,  u3>)
By
Latex:
(ParallelOp  -2  THEN  All  Reduce  THEN  All  (RepUR  ``imonomial-le``)  THEN  Auto)
Home
Index