Nuprl Lemma : int_term_to_ipoly-const

[c:Top]. (int_term_to_ipoly("c") if c=0  then []  else [<c, []>])


Proof




Definitions occuring in Statement :  int_term_to_ipoly: int_term_to_ipoly(t) itermConstant: "const" cons: [a b] nil: [] uall: [x:A]. B[x] top: Top int_eq: if a=b  then c  else d pair: <a, b> natural_number: $n sqequal: t
Definitions unfolded in proof :  int_term_to_ipoly: int_term_to_ipoly(t) itermConstant: "const" int_term_ind: int_term_ind uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom extract_by_obid hypothesis

Latex:
\mforall{}[c:Top].  (int\_term\_to\_ipoly("c")  \msim{}  if  c=0    then  []    else  [<c,  []>])



Date html generated: 2017_09_29-PM-05_55_37
Last ObjectModification: 2017_05_10-PM-04_21_16

Theory : omega


Home Index