Nuprl Lemma : int_term_to_ipoly-const
∀[c:Top]. (int_term_to_ipoly("c") ~ if c=0  then []  else [<c, []>])
Proof
Definitions occuring in Statement : 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
itermConstant: "const"
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
int_eq: if a=b  then c  else d
, 
pair: <a, b>
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
itermConstant: "const"
, 
int_term_ind: int_term_ind, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[c:Top].  (int\_term\_to\_ipoly("c")  \msim{}  if  c=0    then  []    else  [<c,  []>])
Date html generated:
2017_09_29-PM-05_55_37
Last ObjectModification:
2017_05_10-PM-04_21_16
Theory : omega
Home
Index