Nuprl Lemma : int_term_to_ipoly-var
∀[c:Top]. (int_term_to_ipoly(vc) ~ [<1, [c]>])
Proof
Definitions occuring in Statement : 
int_term_to_ipoly: int_term_to_ipoly(t), 
itermVar: vvar, 
cons: [a / b], 
nil: [], 
uall: ∀[x:A]. B[x], 
top: Top, 
pair: <a, b>, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
int_term_to_ipoly: int_term_to_ipoly(t), 
itermVar: vvar, 
int_term_ind: int_term_ind, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[c:Top].  (int\_term\_to\_ipoly(vc)  \msim{}  [ə,  [c]>])
 Date html generated: 
2017_09_29-PM-05_55_39
 Last ObjectModification: 
2017_05_10-PM-04_22_09
Theory : omega
Home
Index