Step * 2 1 2 2 of Lemma mul_poly-sq


1. iMonomial()
2. iMonomial() List
3. ∀[q:iMonomial() List]. (mul_ipoly(v;q) mul-ipoly(v;q))
4. u1 iMonomial()
5. v1 iMonomial() List
6. ∀p,q:iMonomial() List.  (add_ipoly(p;q) ∈ iMonomial() List)
7. ∀[f:(iMonomial() List) ⟶ iMonomial() ⟶ (iMonomial() List)]
     cbv_list_accum(x,a.f[x;a];mul-mono-poly(u;[u1 v1]);v) accumulate (with value and list item a):
                                                                f[x;a]
                                                               over list:
                                                                 v
                                                               with starting value:
                                                                mul-mono-poly(u;[u1 v1])) 
     supposing value-type(iMonomial() List)
⊢ accumulate (with value sofar and list item m):
   add_ipoly(sofar;mul-mono-poly(m;[u1 v1]))
  over list:
    v
  with starting value:
   mul-mono-poly(u;[u1 v1])) eager-accum(sofar,m.add-ipoly(sofar;mul-mono-poly(m;[u1 
                                                                                      v1]));mul-mono-poly(u;[u1 
                                                                                                             v1]);v)
BY
((InstLemma `eager-accum-list_accum` [⌜iMonomial()⌝;⌜iMonomial() List⌝;⌜v⌝;⌜mul-mono-poly(u;[u1 v1])⌝]⋅ THENA Auto)
   THEN (RWO "-1" THENA Auto)
   }

1
1. iMonomial()
2. iMonomial() List
3. ∀[q:iMonomial() List]. (mul_ipoly(v;q) mul-ipoly(v;q))
4. u1 iMonomial()
5. v1 iMonomial() List
6. ∀p,q:iMonomial() List.  (add_ipoly(p;q) ∈ iMonomial() List)
7. ∀[f:(iMonomial() List) ⟶ iMonomial() ⟶ (iMonomial() List)]
     cbv_list_accum(x,a.f[x;a];mul-mono-poly(u;[u1 v1]);v) accumulate (with value and list item a):
                                                                f[x;a]
                                                               over list:
                                                                 v
                                                               with starting value:
                                                                mul-mono-poly(u;[u1 v1])) 
     supposing value-type(iMonomial() List)
8. ∀[f:(iMonomial() List) ⟶ iMonomial() ⟶ (iMonomial() List)]
     eager-accum(x,a.f[x;a];mul-mono-poly(u;[u1 v1]);v) accumulate (with value and list item a):
                                                             f[x;a]
                                                            over list:
                                                              v
                                                            with starting value:
                                                             mul-mono-poly(u;[u1 v1])) 
     supposing valueall-type(iMonomial() List)
⊢ valueall-type(iMonomial() List)

2
1. iMonomial()
2. iMonomial() List
3. ∀[q:iMonomial() List]. (mul_ipoly(v;q) mul-ipoly(v;q))
4. u1 iMonomial()
5. v1 iMonomial() List
6. ∀p,q:iMonomial() List.  (add_ipoly(p;q) ∈ iMonomial() List)
7. ∀[f:(iMonomial() List) ⟶ iMonomial() ⟶ (iMonomial() List)]
     cbv_list_accum(x,a.f[x;a];mul-mono-poly(u;[u1 v1]);v) accumulate (with value and list item a):
                                                                f[x;a]
                                                               over list:
                                                                 v
                                                               with starting value:
                                                                mul-mono-poly(u;[u1 v1])) 
     supposing value-type(iMonomial() List)
8. ∀[f:(iMonomial() List) ⟶ iMonomial() ⟶ (iMonomial() List)]
     eager-accum(x,a.f[x;a];mul-mono-poly(u;[u1 v1]);v) accumulate (with value and list item a):
                                                             f[x;a]
                                                            over list:
                                                              v
                                                            with starting value:
                                                             mul-mono-poly(u;[u1 v1])) 
     supposing valueall-type(iMonomial() List)
⊢ accumulate (with value sofar and list item m):
   add_ipoly(sofar;mul-mono-poly(m;[u1 v1]))
  over list:
    v
  with starting value:
   mul-mono-poly(u;[u1 v1])) accumulate (with value sofar and list item m):
                                  add-ipoly(sofar;mul-mono-poly(m;[u1 v1]))
                                 over list:
                                   v
                                 with starting value:
                                  mul-mono-poly(u;[u1 v1]))


Latex:


Latex:

1.  u  :  iMonomial()
2.  v  :  iMonomial()  List
3.  \mforall{}[q:iMonomial()  List].  (mul\_ipoly(v;q)  \msim{}  mul-ipoly(v;q))
4.  u1  :  iMonomial()
5.  v1  :  iMonomial()  List
6.  \mforall{}p,q:iMonomial()  List.    (add\_ipoly(p;q)  \mmember{}  iMonomial()  List)
7.  \mforall{}[f:(iMonomial()  List)  {}\mrightarrow{}  iMonomial()  {}\mrightarrow{}  (iMonomial()  List)]
          cbv\_list\_accum(x,a.f[x;a];mul-mono-poly(u;[u1  /  v1]);v) 
          \msim{}  accumulate  (with  value  x  and  list  item  a):
                f[x;a]
              over  list:
                  v
              with  starting  value:
                mul-mono-poly(u;[u1  /  v1])) 
          supposing  value-type(iMonomial()  List)
\mvdash{}  accumulate  (with  value  sofar  and  list  item  m):
      add\_ipoly(sofar;mul-mono-poly(m;[u1  /  v1]))
    over  list:
        v
    with  starting  value:
      mul-mono-poly(u;[u1  /  v1])) 
\msim{}  eager-accum(sofar,m.add-ipoly(sofar;mul-mono-poly(m;[u1  /  v1]));mul-mono-poly(u;[u1  /  v1]);v)


By


Latex:
((InstLemma  `eager-accum-list\_accum`  [\mkleeneopen{}iMonomial()\mkleeneclose{};\mkleeneopen{}iMonomial()  List\mkleeneclose{};\mkleeneopen{}v\mkleeneclose{};
    \mkleeneopen{}mul-mono-poly(u;[u1  /  v1])\mkleeneclose{}]\mcdot{}
    THENA  Auto
    )
  THEN  (RWO  "-1"  0  THENA  Auto)
  )




Home Index