Step
*
1
2
of Lemma
satisfiable-pcs-to-integer-problem
1. X1 : iPolynomial() List
2. X2 : iPolynomial() List
3. f : ℤ ⟶ ℤ
4. (∀p∈X1.int_term_value(f;ipolynomial-term(p)) = 0 ∈ ℤ)
5. (∀p∈X2.0 ≤ int_term_value(f;ipolynomial-term(p)))
6. v : ℤ List List
7. rev(pcs-mon-vars(<X1, X2>)) = v ∈ (ℤ List List)
8. 0 < ||v||
9. hd(v) = [] ∈ (ℤ List)
10. ∀[p:iPolynomial()]
(((p ∈ X1) ∨ (p ∈ X2))
⇒ (int_term_value(f;ipolynomial-term(p))
= linearization(p;v) ⋅ map(λvs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v)
∈ ℤ))
⊢ satisfiable(map(λp.linearization(p;v);X1);map(λp.linearization(p;v);X2))
BY
{ (D 0 With ⌜map(λvs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v)⌝
THEN Auto
) }
1
1. X1 : iPolynomial() List
2. X2 : iPolynomial() List
3. f : ℤ ⟶ ℤ
4. (∀p∈X1.int_term_value(f;ipolynomial-term(p)) = 0 ∈ ℤ)
5. (∀p∈X2.0 ≤ int_term_value(f;ipolynomial-term(p)))
6. v : ℤ List List
7. rev(pcs-mon-vars(<X1, X2>)) = v ∈ (ℤ List List)
8. 0 < ||v||
9. hd(v) = [] ∈ (ℤ List)
10. ∀[p:iPolynomial()]
(((p ∈ X1) ∨ (p ∈ X2))
⇒ (int_term_value(f;ipolynomial-term(p))
= linearization(p;v) ⋅ map(λvs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v)
∈ ℤ))
⊢ satisfies-integer-problem(map(λp.linearization(p;v);X1);map(λp.linearization(p;v);
X2);map(λvs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v))
Latex:
Latex:
1. X1 : iPolynomial() List
2. X2 : iPolynomial() List
3. f : \mBbbZ{} {}\mrightarrow{} \mBbbZ{}
4. (\mforall{}p\mmember{}X1.int\_term\_value(f;ipolynomial-term(p)) = 0)
5. (\mforall{}p\mmember{}X2.0 \mleq{} int\_term\_value(f;ipolynomial-term(p)))
6. v : \mBbbZ{} List List
7. rev(pcs-mon-vars(<X1, X2>)) = v
8. 0 < ||v||
9. hd(v) = []
10. \mforall{}[p:iPolynomial()]
(((p \mmember{} X1) \mvee{} (p \mmember{} X2))
{}\mRightarrow{} (int\_term\_value(f;ipolynomial-term(p))
= linearization(p;v) \mcdot{} map(\mlambda{}vs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v)))
\mvdash{} satisfiable(map(\mlambda{}p.linearization(p;v);X1);map(\mlambda{}p.linearization(p;v);X2))
By
Latex:
(D 0 With \mkleeneopen{}map(\mlambda{}vs.accumulate (with value x and list item v):
x * (f v)
over list:
vs
with starting value:
1);v)\mkleeneclose{}
THEN Auto
)
Home
Index