Step * 1 2 1 2 2 2 1 2 1 of Lemma satisfies-gcd-reduce-eq-constraints


1. : ℕ+
2. : ℤ List
3. ||[1 v]|| n ∈ ℤ
4. : ℤ
5. v2 : ℤ List
6. ||[u v2]|| n ∈ ℤ
7. v1 {L:ℤ List| ||L|| n ∈ ℤ}  List
8. ∀sat:{L:ℤ List| ||L|| n ∈ ℤ}  List
     ((∀as∈sat.[1 v] ⋅ as =0)
      (∀as∈v1.[1 v] ⋅ as =0)
      ((↑isl(gcd-reduce-eq-constraints(sat;v1))) ∧ (∀as∈outl(gcd-reduce-eq-constraints(sat;v1)).[1 v] ⋅ as =0)))
9. sat {L:ℤ List| ||L|| n ∈ ℤ}  List
10. (∀as∈sat.[1 v] ⋅ as =0)
11. (∀as∈[[u v2] v1].[1 v] ⋅ as =0)
12. ¬↑null(v2)
13. gg : ℤ
14. |gcd-list(v2)| gg ∈ ℤ
15. 1 < gg
16. [1 v] ⋅ [u v2] =0
⊢ (u rem gg) 0 ∈ ℤ
BY
((InstLemma `gcd-list-property` [⌜v2⌝]⋅ THENA ((MemTypeCD THEN Reduce 0) THEN Auto)) THEN ExRepD) }

1
1. : ℕ+
2. : ℤ List
3. ||[1 v]|| n ∈ ℤ
4. : ℤ
5. v2 : ℤ List
6. ||[u v2]|| n ∈ ℤ
7. v1 {L:ℤ List| ||L|| n ∈ ℤ}  List
8. ∀sat:{L:ℤ List| ||L|| n ∈ ℤ}  List
     ((∀as∈sat.[1 v] ⋅ as =0)
      (∀as∈v1.[1 v] ⋅ as =0)
      ((↑isl(gcd-reduce-eq-constraints(sat;v1))) ∧ (∀as∈outl(gcd-reduce-eq-constraints(sat;v1)).[1 v] ⋅ as =0)))
9. sat {L:ℤ List| ||L|| n ∈ ℤ}  List
10. (∀as∈sat.[1 v] ⋅ as =0)
11. (∀as∈[[u v2] v1].[1 v] ⋅ as =0)
12. ¬↑null(v2)
13. gg : ℤ
14. |gcd-list(v2)| gg ∈ ℤ
15. 1 < gg
16. [1 v] ⋅ [u v2] =0
17. : ℤ List
18. v2 gcd-list(v2) R ∈ (ℤ List)
19. : ℤ List
20. ||S|| ||v2|| ∈ ℤ
21. gcd-list(v2) S ⋅ v2 ∈ ℤ
⊢ (u rem gg) 0 ∈ ℤ


Latex:


Latex:

1.  n  :  \mBbbN{}\msupplus{}
2.  v  :  \mBbbZ{}  List
3.  ||[1  /  v]||  =  n
4.  u  :  \mBbbZ{}
5.  v2  :  \mBbbZ{}  List
6.  ||[u  /  v2]||  =  n
7.  v1  :  \{L:\mBbbZ{}  List|  ||L||  =  n\}    List
8.  \mforall{}sat:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List
          ((\mforall{}as\mmember{}sat.[1  /  v]  \mcdot{}  as  =0)
          {}\mRightarrow{}  (\mforall{}as\mmember{}v1.[1  /  v]  \mcdot{}  as  =0)
          {}\mRightarrow{}  ((\muparrow{}isl(gcd-reduce-eq-constraints(sat;v1)))
                \mwedge{}  (\mforall{}as\mmember{}outl(gcd-reduce-eq-constraints(sat;v1)).[1  /  v]  \mcdot{}  as  =0)))
9.  sat  :  \{L:\mBbbZ{}  List|  ||L||  =  n\}    List
10.  (\mforall{}as\mmember{}sat.[1  /  v]  \mcdot{}  as  =0)
11.  (\mforall{}as\mmember{}[[u  /  v2]  /  v1].[1  /  v]  \mcdot{}  as  =0)
12.  \mneg{}\muparrow{}null(v2)
13.  gg  :  \mBbbZ{}
14.  |gcd-list(v2)|  =  gg
15.  1  <  gg
16.  [1  /  v]  \mcdot{}  [u  /  v2]  =0
\mvdash{}  (u  rem  gg)  =  0


By


Latex:
((InstLemma  `gcd-list-property`  [\mkleeneopen{}v2\mkleeneclose{}]\mcdot{}  THENA  ((MemTypeCD  THEN  Reduce  0)  THEN  Auto))  THEN  ExRepD)




Home Index