Step
*
of Lemma
fixpoint-induction-bottom2
∀[E,S:Type].
(∀[G:S ⟶ partial(E)]. ∀[g:S ⟶ S]. (G fix(g) ∈ partial(E))) supposing ((⊥ ∈ S) and mono(E) and value-type(E))
BY
{ (UnivCD THENA (Try (Complete (Auto)) THEN Try (BLemma `bottom-member-prop`) THEN Auto)) }
1
1. E : Type
2. S : Type
3. value-type(E)
4. mono(E)
5. ⊥ ∈ S
6. G : S ⟶ partial(E)
7. g : S ⟶ S
⊢ G fix(g) ∈ partial(E)
Latex:
Latex:
\mforall{}[E,S:Type].
(\mforall{}[G:S {}\mrightarrow{} partial(E)]. \mforall{}[g:S {}\mrightarrow{} S]. (G fix(g) \mmember{} partial(E))) supposing
((\mbot{} \mmember{} S) and
mono(E) and
value-type(E))
By
Latex:
(UnivCD THENA (Try (Complete (Auto)) THEN Try (BLemma `bottom-member-prop`) THEN Auto))
Home
Index