Step
*
1
1
of Lemma
quotient-dep-function-subtype
1. X : Type
2. X ⊆r Base
3. A : X ⟶ Type
4. E : x:X ⟶ A[x] ⟶ A[x] ⟶ ℙ
5. ∀x:X. EquivRel(A[x];a,b.E[x;a;b])
6. ∀x:X. a,b:A[x]//E[x;a;b] ≡ a,b:A[x]//(↓E[x;a;b])
7. ∀x:X. EquivRel(A[x];a,b.↓E[x;a;b])
8. EquivRel(x:X ⟶ A[x];f,g.∀x:X. (↓E[x;f x;g x]))
⊢ (x:X ⟶ (a,b:A[x]//E[x;a;b])) ⊆r (f,g:x:X ⟶ A[x]//(∀x:X. (↓E[x;f x;g x])))
BY
{ TACTIC:((D 0 THENA Auto) THEN (GenConcl ⌜x = y ∈ (x:X ⟶ (a,b:A[x]//E[x;a;b]))⌝⋅ THENA Auto) THEN ThinVar `x') }
1
1. X : Type
2. X ⊆r Base
3. A : X ⟶ Type
4. E : x:X ⟶ A[x] ⟶ A[x] ⟶ ℙ
5. ∀x:X. EquivRel(A[x];a,b.E[x;a;b])
6. ∀x:X. a,b:A[x]//E[x;a;b] ≡ a,b:A[x]//(↓E[x;a;b])
7. ∀x:X. EquivRel(A[x];a,b.↓E[x;a;b])
8. EquivRel(x:X ⟶ A[x];f,g.∀x:X. (↓E[x;f x;g x]))
9. y : x:X ⟶ (a,b:A[x]//E[x;a;b])
⊢ y ∈ f,g:x:X ⟶ A[x]//(∀x:X. (↓E[x;f x;g x]))
Latex:
Latex:
1. X : Type
2. X \msubseteq{}r Base
3. A : X {}\mrightarrow{} Type
4. E : x:X {}\mrightarrow{} A[x] {}\mrightarrow{} A[x] {}\mrightarrow{} \mBbbP{}
5. \mforall{}x:X. EquivRel(A[x];a,b.E[x;a;b])
6. \mforall{}x:X. a,b:A[x]//E[x;a;b] \mequiv{} a,b:A[x]//(\mdownarrow{}E[x;a;b])
7. \mforall{}x:X. EquivRel(A[x];a,b.\mdownarrow{}E[x;a;b])
8. EquivRel(x:X {}\mrightarrow{} A[x];f,g.\mforall{}x:X. (\mdownarrow{}E[x;f x;g x]))
\mvdash{} (x:X {}\mrightarrow{} (a,b:A[x]//E[x;a;b])) \msubseteq{}r (f,g:x:X {}\mrightarrow{} A[x]//(\mforall{}x:X. (\mdownarrow{}E[x;f x;g x])))
By
Latex:
TACTIC:((D 0 THENA Auto) THEN (GenConcl \mkleeneopen{}x = y\mkleeneclose{}\mcdot{} THENA Auto) THEN ThinVar `x')
Home
Index