Step
*
1
1
of Lemma
locally-ranked-is-well-founded
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. Trans(T;x,y.R[y;x])
4. k : ℕ
5. rank : T ⟶ ℕ
6. l : T ⟶ ℕk
7. ∀x,y:T. (((l x) = (l y) ∈ ℤ)
⇒ R[x;y]
⇒ rank x < rank y)
8. f : ℕ ⟶ T
9. j : ℕ
10. i : ℕj
11. ∀k:ℕk. (if (l (f i) =z k) then (rank (f i)) + 1 else 0 fi ≤ if (l (f j) =z k) then (rank (f j)) + 1 else 0 fi )
⊢ ↓∃i,j:ℕ. (i < j ∧ (¬R[f j;f i]))
BY
{ ((InstHyp [⌜l (f i)⌝] (-1)⋅ THENA Auto) THEN (SplitOnHypITE -1 THEN Auto) THEN SplitOnHypITE -2 THEN Auto') }
1
.....truecase.....
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. Trans(T;x,y.R[y;x])
4. k : ℕ
5. rank : T ⟶ ℕ
6. l : T ⟶ ℕk
7. ∀x,y:T. (((l x) = (l y) ∈ ℤ)
⇒ R[x;y]
⇒ rank x < rank y)
8. f : ℕ ⟶ T
9. j : ℕ
10. i : ℕj
11. ∀k:ℕk. (if (l (f i) =z k) then (rank (f i)) + 1 else 0 fi ≤ if (l (f j) =z k) then (rank (f j)) + 1 else 0 fi )
12. ((rank (f i)) + 1) ≤ ((rank (f j)) + 1)
13. (l (f i)) = (l (f i)) ∈ ℤ
14. (l (f j)) = (l (f i)) ∈ ℤ
⊢ ↓∃i,j:ℕ. (i < j ∧ (¬R[f j;f i]))
Latex:
Latex:
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. Trans(T;x,y.R[y;x])
4. k : \mBbbN{}
5. rank : T {}\mrightarrow{} \mBbbN{}
6. l : T {}\mrightarrow{} \mBbbN{}k
7. \mforall{}x,y:T. (((l x) = (l y)) {}\mRightarrow{} R[x;y] {}\mRightarrow{} rank x < rank y)
8. f : \mBbbN{} {}\mrightarrow{} T
9. j : \mBbbN{}
10. i : \mBbbN{}j
11. \mforall{}k:\mBbbN{}k
(if (l (f i) =\msubz{} k) then (rank (f i)) + 1 else 0 fi \mleq{} if (l (f j) =\msubz{} k)
then (rank (f j)) + 1
else 0
fi )
\mvdash{} \mdownarrow{}\mexists{}i,j:\mBbbN{}. (i < j \mwedge{} (\mneg{}R[f j;f i]))
By
Latex:
((InstHyp [\mkleeneopen{}l (f i)\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN (SplitOnHypITE -1 THEN Auto)
THEN SplitOnHypITE -2
THEN Auto')
Home
Index