Step
*
of Lemma
uanti_sym_functionality_wrt_iff
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  uiff(UniformlyAntiSym(T;x,y.R[x;y]);UniformlyAntiSym(T;x,y.R'[x;y])) supposing ∀[x,y:T].  (R[x;y] 
⇐⇒ R'[x;y])
BY
{ (((Unfold `uanti_sym` 0 THENM RepD) THENM RWW "-1" 0) THEN Auto) }
Latex:
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    uiff(UniformlyAntiSym(T;x,y.R[x;y]);UniformlyAntiSym(T;x,y.R'[x;y])) 
    supposing  \mforall{}[x,y:T].    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y])
By
Latex:
(((Unfold  `uanti\_sym`  0  THENM  RepD)  THENM  RWW  "-1"  0)  THEN  Auto)
Home
Index