Step
*
of Lemma
utrans_imp_sp_utrans_b
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
((∀[x,y:T]. R[x;y] supposing R[x;y])
⇒ UniformlyTrans(T;a,b.R[a;b])
⇒ {∀[a,b,c:T]. (strict_part(x,y.R[x;y];a;c)) supposing (strict_part(x,y.R[x;y];a;b) and R[b;c])})
BY
{ ((Unfolds ``utrans strict_part guard`` 0 THEN GenRepD) THEN Auto) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀[x,y:T]. R[x;y] supposing R[x;y]
4. ∀[a,b,c:T]. (R[a;b]
⇒ R[b;c]
⇒ R[a;c])
5. [a] : T
6. [b] : T
7. [c] : T
8. [%2] : R[b;c]
9. [%3] : R[a;b] ∧ (¬R[b;a])
⊢ R[a;c]
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
((\mforall{}[x,y:T]. R[x;y] supposing R[x;y])
{}\mRightarrow{} UniformlyTrans(T;a,b.R[a;b])
{}\mRightarrow{} \{\mforall{}[a,b,c:T]. (strict\_part(x,y.R[x;y];a;c)) supposing (strict\_part(x,y.R[x;y];a;b) and R[b;c])\}\000C)
By
Latex:
((Unfolds ``utrans strict\_part guard`` 0 THEN GenRepD) THEN Auto)
Home
Index