Step
*
of Lemma
rel_star_transitivity_ext
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[x,y,z:T]. ((x (R^*) y)
⇒ (y (R^*) z)
⇒ (x (R^*) z))
BY
{ Extract of Obid: rel_star_transitivity
normalizes to:
λxRy,yRz. let n,Rn = yRz
in let m,Rm = xRy
in <m + n
, letrec f(x)=λn,Rm,Rn. if x=0
then Rn
else if x + n=0
then Ax
else let z1,R_Rm' = Rm
in <z1, let R,Rm' = R_Rm' in <R, f (x - 1) n Rm' Rn>> in
f(m)
n
Rm
Rn
>
finishing with Auto }
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. \mforall{}[x,y,z:T].
((x (R\^{}*) y) {}\mRightarrow{} (y (R\^{}*) z) {}\mRightarrow{} (x (R\^{}*) z))
By
Latex:
Extract of Obid: rel\_star\_transitivity
normalizes to:
\mlambda{}xRy,yRz. let n,Rn = yRz
in let m,Rm = xRy
in <m + n
, letrec f(x)=\mlambda{}n,Rm,Rn. if x=0
then Rn
else if x + n=0
then Ax
else let z1,R$_{Rm'}$ = Rm
in <z1
, let R,Rm' = R$_{Rm'}\mbackslash{}ff\000C24
in <R, f (x - 1) n Rm' Rn>
> in
f(m)
n
Rm
Rn
>
finishing with Auto
Home
Index