Nuprl Definition : imp-type

imp-type(A;B) ==  x,y:Base//(least-equiv(Base;λx,y. ((x y ∈ A)  (x y ∈ B))) y)



Definitions occuring in Statement :  least-equiv: least-equiv(A;R) quotient: x,y:A//B[x; y] implies:  Q apply: a lambda: λx.A[x] base: Base equal: t ∈ T
Definitions occuring in definition :  quotient: x,y:A//B[x; y] apply: a least-equiv: least-equiv(A;R) base: Base lambda: λx.A[x] implies:  Q equal: t ∈ T
FDL editor aliases :  imp-type

Latex:
imp-type(A;B)  ==    x,y:Base//(least-equiv(Base;\mlambda{}x,y.  ((x  =  y)  {}\mRightarrow{}  (x  =  y)))  x  y)



Date html generated: 2019_06_20-PM-02_01_39
Last ObjectModification: 2018_10_14-PM-05_23_30

Theory : relations2


Home Index