Step
*
of Lemma
rel_exp_iff2
∀n:ℕ
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
∀x,y:T. (x R^n y
⇐⇒ (∃z:T. (0 < n c∧ ((x R z) ∧ (z R^n - 1 y)))) ∨ ((n = 0 ∈ ℤ) ∧ (x = y ∈ T)))
BY
{ InductionOnNat }
1
.....basecase.....
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
∀x,y:T. (x R^0 y
⇐⇒ (∃z:T. (0 < 0 c∧ ((x R z) ∧ (z R^0 - 1 y)))) ∨ ((0 = 0 ∈ ℤ) ∧ (x = y ∈ T)))
2
.....upcase.....
1. n : ℤ
2. [%1] : 0 < n
3. ∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
∀x,y:T. (x R^n - 1 y
⇐⇒ (∃z:T. (0 < n - 1 c∧ ((x R z) ∧ (z R^n - 1 - 1 y)))) ∨ (((n - 1) = 0 ∈ ℤ) ∧ (x = y ∈ T)))
⊢ ∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
∀x,y:T. (x R^n y
⇐⇒ (∃z:T. (0 < n c∧ ((x R z) ∧ (z R^n - 1 y)))) ∨ ((n = 0 ∈ ℤ) ∧ (x = y ∈ T)))
Latex:
Latex:
\mforall{}n:\mBbbN{}
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
\mforall{}x,y:T.
(x R\^{}n y \mLeftarrow{}{}\mRightarrow{} (\mexists{}z:T. (0 < n c\mwedge{} ((x R z) \mwedge{} (z rel\_exp(T; R; n - 1) y)))) \mvee{} ((n = 0) \mwedge{} (x = y)))
By
Latex:
InductionOnNat
Home
Index