Nuprl Lemma : add-comm
∀x,y:ℤ.  ((x + y) = (y + x) ∈ ℤ)
Proof
Definitions occuring in Statement : 
all: ∀x:A. B[x]
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
addCommutative, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
introduction, 
extract_by_obid
Latex:
\mforall{}x,y:\mBbbZ{}.    ((x  +  y)  =  (y  +  x))
Date html generated:
2019_06_20-AM-11_19_47
Last ObjectModification:
2018_10_12-PM-04_21_11
Theory : sqequal_1
Home
Index