Nuprl Lemma : add-comm

x,y:ℤ.  ((x y) (y x) ∈ ℤ)


Proof




Definitions occuring in Statement :  all: x:A. B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T
Lemmas referenced :  istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut addCommutative hypothesisEquality hypothesis Error :inhabitedIsType,  introduction extract_by_obid

Latex:
\mforall{}x,y:\mBbbZ{}.    ((x  +  y)  =  (y  +  x))



Date html generated: 2019_06_20-AM-11_19_47
Last ObjectModification: 2018_10_12-PM-04_21_11

Theory : sqequal_1


Home Index