Nuprl Lemma : ycomb-unroll
∀[f:Top]. (Y f ~ f (Y f))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
ycomb: Y
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ycomb: Y
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}[f:Top].  (Y  f  \msim{}  f  (Y  f))
Date html generated:
2016_05_13-PM-03_19_52
Last ObjectModification:
2015_12_26-AM-09_09_16
Theory : sqequal_1
Home
Index