Step * 1 2 1 of Lemma same-binding-not-bound


1. varname()
2. varname() List
3. ∀[ws:varname() List]
     ∀v@0,w:varname().
       ((↑same-binding(v;ws;v@0;w))  (v@0 ∈ v))  ((¬(w ∈ ws)) ∧ (w v@0 ∈ varname()) ∧ (||v|| ||ws|| ∈ ℤ)))
4. u1 varname()
5. v1 varname() List
6. ∀v@0,w:varname().
     ((↑same-binding([u v];v1;v@0;w))
      (v@0 ∈ [u v]))
      ((¬(w ∈ v1)) ∧ (w v@0 ∈ varname()) ∧ (||[u v]|| ||v1|| ∈ ℤ)))
7. v@0 varname()
8. ¬(u v@0 ∈ varname())
9. varname()
10. ¬(u1 w ∈ varname())
11. ↑same-binding(v;v1;v@0;w)
12. ¬(v@0 ∈ [u v])
13. ¬(v@0 ∈ v)
14. v@0 ∈ varname()
15. ||v|| ||v1|| ∈ ℤ
16. (w ∈ [u1 v1])
⊢ (w ∈ v1)
BY
(GenListD (-1) THEN -1 THEN Auto) }


Latex:


Latex:

1.  u  :  varname()
2.  v  :  varname()  List
3.  \mforall{}[ws:varname()  List]
          \mforall{}v@0,w:varname().
              ((\muparrow{}same-binding(v;ws;v@0;w))  {}\mRightarrow{}  (\mneg{}(v@0  \mmember{}  v))  {}\mRightarrow{}  ((\mneg{}(w  \mmember{}  ws))  \mwedge{}  (w  =  v@0)  \mwedge{}  (||v||  =  ||ws||)))
4.  u1  :  varname()
5.  v1  :  varname()  List
6.  \mforall{}v@0,w:varname().
          ((\muparrow{}same-binding([u  /  v];v1;v@0;w))
          {}\mRightarrow{}  (\mneg{}(v@0  \mmember{}  [u  /  v]))
          {}\mRightarrow{}  ((\mneg{}(w  \mmember{}  v1))  \mwedge{}  (w  =  v@0)  \mwedge{}  (||[u  /  v]||  =  ||v1||)))
7.  v@0  :  varname()
8.  \mneg{}(u  =  v@0)
9.  w  :  varname()
10.  \mneg{}(u1  =  w)
11.  \muparrow{}same-binding(v;v1;v@0;w)
12.  \mneg{}(v@0  \mmember{}  [u  /  v])
13.  \mneg{}(v@0  \mmember{}  v)
14.  w  =  v@0
15.  ||v||  =  ||v1||
16.  (w  \mmember{}  [u1  /  v1])
\mvdash{}  (w  \mmember{}  v1)


By


Latex:
(GenListD  (-1)  THEN  D  -1  THEN  Auto)




Home Index