Nuprl Lemma : append-tuple-simplify
∀[p:Top × Top]. (fst(snd(let x,y = p in <x, y, ⋅>)) ~ snd(p))
Proof
Definitions occuring in Statement : 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
spread: spread def, 
pair: <a, b>
, 
product: x:A × B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pi2: snd(t)
, 
pi1: fst(t)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
productElimination, 
thin, 
sqequalRule, 
sqequalAxiom, 
hypothesis, 
productEquality, 
lemma_by_obid
Latex:
\mforall{}[p:Top  \mtimes{}  Top].  (fst(snd(let  x,y  =  p  in  <x,  y,  \mcdot{}>))  \msim{}  snd(p))
Date html generated:
2016_05_14-PM-03_59_04
Last ObjectModification:
2015_12_26-PM-07_21_40
Theory : tuples
Home
Index