Step * 1 2 1 2 of Lemma prec-sub-size


1. Type
2. Atom ⟶ P ⟶ ((P Type) List)
3. P
4. prec(lbl,p.a[lbl;p];j)
5. P
6. labl {lbl:Atom| 0 < ||a[lbl;i]||} 
7. y1 tuple-type(map(λx.case x
                           of inl(y) =>
                           case of inl(p) => prec(lbl,p.a[lbl;p];p) inr(p) => prec(lbl,p.a[lbl;p];p) List
                           inr(E) =>
                           E;a[labl;i]))
8. : ℕ||a[labl;i]||
9. ↑isl(a[labl;i][k])
10. outl(a[labl;i][k]) (inr ) ∈ (P P)
11. (x ∈ y1.k)
⊢ ||j;x|| ≤ case a[labl;i][k]
   of inl(p) =>
   case of inl(j) => ||j;y1.k|| inr(j) => l_sum(map(λz.||j;z||;y1.k))
   inr(_) =>
   0
BY
(RepeatFor (MoveToConcl (-2))
   THEN (GenConclTerm ⌜a[labl;i][k]⌝⋅ THENA Auto)
   THEN -2
   THEN Try (DVar `x1')
   THEN Reduce 0
   THEN Auto) }

1
1. Type
2. Atom ⟶ P ⟶ ((P Type) List)
3. P
4. prec(lbl,p.a[lbl;p];j)
5. P
6. labl {lbl:Atom| 0 < ||a[lbl;i]||} 
7. y1 tuple-type(map(λx.case x
                           of inl(y) =>
                           case of inl(p) => prec(lbl,p.a[lbl;p];p) inr(p) => prec(lbl,p.a[lbl;p];p) List
                           inr(E) =>
                           E;a[labl;i]))
8. : ℕ||a[labl;i]||
9. (x ∈ y1.k)
10. P
11. a[labl;i][k] (inl (inr )) ∈ (P Type)
12. True
13. j ∈ P
⊢ ||j;x|| ≤ l_sum(map(λz.||y;z||;y1.k))


Latex:


Latex:

1.  P  :  Type
2.  a  :  Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)
3.  j  :  P
4.  x  :  prec(lbl,p.a[lbl;p];j)
5.  i  :  P
6.  labl  :  \{lbl:Atom|  0  <  ||a[lbl;i]||\} 
7.  y1  :  tuple-type(map(\mlambda{}x.case  x
                                                      of  inl(y)  =>
                                                      case  y
                                                        of  inl(p)  =>
                                                        prec(lbl,p.a[lbl;p];p)
                                                        |  inr(p)  =>
                                                        prec(lbl,p.a[lbl;p];p)  List
                                                      |  inr(E)  =>
                                                      E;a[labl;i]))
8.  k  :  \mBbbN{}||a[labl;i]||
9.  \muparrow{}isl(a[labl;i][k])
10.  outl(a[labl;i][k])  =  (inr  j  )
11.  (x  \mmember{}  y1.k)
\mvdash{}  ||j;x||  \mleq{}  case  a[labl;i][k]
      of  inl(p)  =>
      case  p  of  inl(j)  =>  ||j;y1.k||  |  inr(j)  =>  l\_sum(map(\mlambda{}z.||j;z||;y1.k))
      |  inr($_{}$)  =>
      0


By


Latex:
(RepeatFor  2  (MoveToConcl  (-2))
  THEN  (GenConclTerm  \mkleeneopen{}a[labl;i][k]\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  D  -2
  THEN  Try  (DVar  `x1')
  THEN  Reduce  0
  THEN  Auto)




Home Index