Nuprl Lemma : shorten-tuple-simplify
∀[p:Top × Top × Top]. (fst(shorten-tuple(p;1)) ~ fst(snd(p)))
Proof
Definitions occuring in Statement : 
shorten-tuple: shorten-tuple(x;n)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
product: x:A × B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
shorten-tuple: shorten-tuple(x;n)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
pi2: snd(t)
, 
subtract: n - m
, 
bfalse: ff
, 
pi1: fst(t)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
productElimination, 
thin, 
sqequalRule, 
sqequalAxiom, 
hypothesis, 
productEquality, 
lemma_by_obid
Latex:
\mforall{}[p:Top  \mtimes{}  Top  \mtimes{}  Top].  (fst(shorten-tuple(p;1))  \msim{}  fst(snd(p)))
Date html generated:
2016_05_14-PM-03_59_06
Last ObjectModification:
2015_12_26-PM-07_21_34
Theory : tuples
Home
Index