Nuprl Lemma : shorten-tuple-simplify2
∀[p:Top × Top × Top]. (snd(shorten-tuple(p;1)) ~ snd(snd(p)))
Proof
Definitions occuring in Statement :
shorten-tuple: shorten-tuple(x;n)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
pi2: snd(t)
,
product: x:A × B[x]
,
natural_number: $n
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
shorten-tuple: shorten-tuple(x;n)
,
le_int: i ≤z j
,
lt_int: i <z j
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
pi2: snd(t)
,
subtract: n - m
,
bfalse: ff
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
productElimination,
thin,
sqequalRule,
sqequalAxiom,
hypothesis,
productEquality,
lemma_by_obid
Latex:
\mforall{}[p:Top \mtimes{} Top \mtimes{} Top]. (snd(shorten-tuple(p;1)) \msim{} snd(snd(p)))
Date html generated:
2016_05_14-PM-03_59_07
Last ObjectModification:
2015_12_26-PM-07_21_35
Theory : tuples
Home
Index