Step
*
2
1
2
of Lemma
PZF_safe_functionality
1. C : Type
2. element : Form(C)
3. set : Form(C)
4. ∀vs,ws:Atom List. (set-equal(Atom;vs;ws)
⇒ PZF_safe(element;vs) = PZF_safe(element;ws))
5. ∀vs,ws:Atom List. (set-equal(Atom;vs;ws)
⇒ PZF_safe(set;vs) = PZF_safe(set;ws))
6. vs : Atom List
7. ¬(vs = [] ∈ (Atom List))
8. ws : Atom List
9. set-equal(Atom;vs;ws)
10. null(ws) ~ ff
11. ∀[x:Atom]. (¬(x ∈ vs-[hd(vs)]))
12. x : Atom
13. (x ∈ ws) ∧ (¬(x = hd(ws) ∈ Atom))
14. ¬((x ∈ vs) ∧ (¬(x = hd(vs) ∈ Atom)))
15. ¬(hd(ws) = hd(vs) ∈ Atom)
⊢ False
BY
{ ((D -5 With ⌜hd(ws)⌝ THENA Auto) THEN D -1 THEN RWW "member-list-diff member_singleton" 0 THEN Auto) }
Latex:
Latex:
1. C : Type
2. element : Form(C)
3. set : Form(C)
4. \mforall{}vs,ws:Atom List. (set-equal(Atom;vs;ws) {}\mRightarrow{} PZF\_safe(element;vs) = PZF\_safe(element;ws))
5. \mforall{}vs,ws:Atom List. (set-equal(Atom;vs;ws) {}\mRightarrow{} PZF\_safe(set;vs) = PZF\_safe(set;ws))
6. vs : Atom List
7. \mneg{}(vs = [])
8. ws : Atom List
9. set-equal(Atom;vs;ws)
10. null(ws) \msim{} ff
11. \mforall{}[x:Atom]. (\mneg{}(x \mmember{} vs-[hd(vs)]))
12. x : Atom
13. (x \mmember{} ws) \mwedge{} (\mneg{}(x = hd(ws)))
14. \mneg{}((x \mmember{} vs) \mwedge{} (\mneg{}(x = hd(vs))))
15. \mneg{}(hd(ws) = hd(vs))
\mvdash{} False
By
Latex:
((D -5 With \mkleeneopen{}hd(ws)\mkleeneclose{} THENA Auto)
THEN D -1
THEN RWW "member-list-diff member\_singleton" 0
THEN Auto)
Home
Index