Nuprl Lemma : temp-lifting-gen-list-rev_wf

[B:Type]. ∀[n:ℕ]. ∀[m:ℕ1]. ∀[A:ℕn ⟶ Type]. ∀[bags:k:ℕn ⟶ bag(A k)]. ∀[g:funtype(n m;λx.(A (x m));B)].
  (lifting-gen-list-rev(n;bags) g ∈ bag(B))


Proof




Definitions occuring in Statement :  lifting-gen-list-rev: lifting-gen-list-rev(n;bags) bag: bag(T) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type
Lemmas referenced :  lifting-gen-list-rev_wf
Rules used in proof :  cut lemma_by_obid hypothesis

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].
\mforall{}[g:funtype(n  -  m;\mlambda{}x.(A  (x  +  m));B)].
    (lifting-gen-list-rev(n;bags)  m  g  \mmember{}  bag(B))



Date html generated: 2016_05_15-PM-02_59_38
Last ObjectModification: 2015_12_27-AM-09_29_18

Theory : bags


Home Index