Nuprl Lemma : lifting-gen-list-rev_wf

[B:Type]. ∀[n:ℕ]. ∀[m:ℕ1]. ∀[A:ℕn ⟶ Type]. ∀[bags:k:ℕn ⟶ bag(A k)]. ∀[g:funtype(n m;λx.(A (x m));B)].
  (lifting-gen-list-rev(n;bags) g ∈ bag(B))


Proof




Definitions occuring in Statement :  lifting-gen-list-rev: lifting-gen-list-rev(n;bags) bag: bag(T) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] nat: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) squash: T le: A ≤ B true: True subtype_rel: A ⊆B iff: ⇐⇒ Q uiff: uiff(P;Q) less_than: a < b lifting-gen-list-rev: lifting-gen-list-rev(n;bags) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  funtype: funtype(n;A;T) subtract: m bfalse: ff rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  subtract_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf subtype_base_sq int_subtype_base lelt_wf squash_wf true_wf iff_weakening_equal ge_wf less_than_wf funtype_wf int_seg_wf add-member-int_seg2 bag_wf eq_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_eq_int single-bag_wf subtype_rel-equal primrec_wf minus-zero minus-add minus-one-mul add-zero add-mul-special zero-mul primrec0_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot bag-combine_wf nat_wf add-member-int_seg1 decidable__lt primrec-unroll equal-wf-base add-associates minus-minus add-swap add-commutes one-mul itermMultiply_wf int_term_value_mul_lemma bool_cases bool_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_pairFormation dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality natural_numberEquality addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination applyEquality imageElimination imageMemberEquality baseClosed universeEquality intWeakElimination lambdaFormation axiomEquality functionExtensionality functionEquality equalityElimination multiplyEquality minusEquality impliesFunctionality

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].
\mforall{}[g:funtype(n  -  m;\mlambda{}x.(A  (x  +  m));B)].
    (lifting-gen-list-rev(n;bags)  m  g  \mmember{}  bag(B))



Date html generated: 2017_10_01-AM-09_02_54
Last ObjectModification: 2017_07_26-PM-04_43_56

Theory : bags


Home Index