Nuprl Lemma : bag-combine_wf

[A,B:Type]. ∀[bs:bag(A)]. ∀[f:A ⟶ bag(B)].  (⋃x∈bs.f[x] ∈ bag(B))


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-combine: x∈bs.f[x] so_apply: x[s]
Lemmas referenced :  bag-union_wf bag-map_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[bs:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].    (\mcup{}x\mmember{}bs.f[x]  \mmember{}  bag(B))



Date html generated: 2016_05_15-PM-02_28_00
Last ObjectModification: 2015_12_27-AM-09_51_07

Theory : bags


Home Index