Nuprl Lemma : bag-union_wf

[T:Type]. ∀[bbs:bag(bag(T))].  (bag-union(bbs) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q bag-union: bag-union(bbs) prop: nat: false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top or: P ∨ Q concat: concat(ll) empty-bag: {} cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B bag-append: as bs true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bag_wf permutation_wf list_wf istype-universe nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases reduce_nil_lemma empty-bag_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-false istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf reduce_cons_lemma bag-append_wf istype-nat permutation-invariant equal_wf cons_wf concat_append append-nil bag-subtype-list bag-append-comm squash_wf true_wf subtype_rel_self iff_weakening_equal bag-append-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule pertypeElimination promote_hyp productElimination equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt rename universeIsType equalityIstype dependent_functionElimination independent_functionElimination productIsType sqequalBase because_Cache axiomEquality isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality setElimination intWeakElimination natural_numberEquality independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality voidElimination independent_pairFormation functionIsTypeImplies unionElimination hypothesis_subsumption dependent_set_memberEquality_alt applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bbs:bag(bag(T))].    (bag-union(bbs)  \mmember{}  bag(T))



Date html generated: 2019_10_15-AM-11_00_11
Last ObjectModification: 2018_11_30-AM-09_53_02

Theory : bags


Home Index