Nuprl Lemma : bag-append_wf

[T:Type]. ∀[as,bs:bag(T)].  (as bs ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-append: as bs bag: bag(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q bag-append: as bs so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  quotient-member-eq list_wf permutation_wf permutation-equiv append_wf equal-wf-base bag_wf append_functionality_wrt_permutation
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination thin lemma_by_obid isectElimination hypothesisEquality hypothesis lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination productEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].    (as  +  bs  \mmember{}  bag(T))



Date html generated: 2016_05_15-PM-02_22_09
Last ObjectModification: 2015_12_27-AM-09_55_18

Theory : bags


Home Index