Nuprl Lemma : append_functionality_wrt_permutation
∀[A:Type]
  ∀as1,as2,bs1,bs2:A List.  (permutation(A;as1;bs1) ⇒ permutation(A;as2;bs2) ⇒ permutation(A;as1 @ as2;bs1 @ bs2))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2), 
append: as @ bs, 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uimplies: b supposing a, 
permutation: permutation(T;L1;L2), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
top: Top, 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
guard: {T}, 
not: ¬A, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
subtype_rel: A ⊆r B, 
less_than: a < b, 
le: A ≤ B, 
lelt: i ≤ j < k, 
less_than': less_than'(a;b), 
inject: Inj(A;B;f), 
nat: ℕ, 
squash: ↓T, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
true: True, 
cand: A c∧ B
Lemmas referenced : 
permutation-length, 
permutation_wf, 
list_wf, 
length-append, 
bnot_wf, 
le_wf, 
le_int_wf, 
less_than_wf, 
assert_wf, 
equal-wf-T-base, 
bool_wf, 
length_wf, 
lt_int_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
non_neg_length, 
int_seg_subtype, 
lelt_wf, 
int_seg_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
add-member-int_seg1, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
inject_wf, 
append_wf, 
permute_list_wf, 
subtype_rel_function, 
false_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
full-omega-unsat, 
nat_properties, 
length_wf_nat, 
decidable__equal_int, 
add-is-int-iff, 
list_extensionality, 
nat_wf, 
iff_weakening_equal, 
add_functionality_wrt_eq, 
true_wf, 
squash_wf, 
permute_list_length, 
select_wf, 
permute_list_select, 
subtype_rel_self, 
select_append_front, 
select_append_back, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
productElimination, 
universeEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
lambdaEquality, 
baseClosed, 
equalitySymmetry, 
equalityTransitivity, 
cumulativity, 
rename, 
setElimination, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
dependent_functionElimination, 
computeAll, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
applyLambdaEquality, 
addEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
productEquality, 
approximateComputation, 
imageElimination, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
imageMemberEquality, 
instantiate, 
hyp_replacement
Latex:
\mforall{}[A:Type]
    \mforall{}as1,as2,bs1,bs2:A  List.
        (permutation(A;as1;bs1)  {}\mRightarrow{}  permutation(A;as2;bs2)  {}\mRightarrow{}  permutation(A;as1  @  as2;bs1  @  bs2))
Date html generated:
2019_06_20-PM-01_37_49
Last ObjectModification:
2018_08_21-PM-11_00_37
Theory : list_1
Home
Index