Nuprl Lemma : permutation-length
∀[A:Type]. ∀[L1,L2:A List].  ||L1|| = ||L2|| ∈ ℤ supposing permutation(A;L1;L2)
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
length: ||as||
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
permutation: permutation(T;L1;L2)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
Lemmas referenced : 
exists_wf, 
int_seg_wf, 
length_wf, 
inject_wf, 
equal_wf, 
list_wf, 
permute_list_wf, 
permute_list_length
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
extract_by_obid, 
isectElimination, 
functionEquality, 
natural_numberEquality, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
voidEquality, 
hyp_replacement, 
applyLambdaEquality, 
intEquality
Latex:
\mforall{}[A:Type].  \mforall{}[L1,L2:A  List].    ||L1||  =  ||L2||  supposing  permutation(A;L1;L2)
Date html generated:
2019_06_20-PM-01_37_21
Last ObjectModification:
2018_08_16-PM-01_17_07
Theory : list_1
Home
Index