Nuprl Lemma : permutation-length

[A:Type]. ∀[L1,L2:A List].  ||L1|| ||L2|| ∈ ℤ supposing permutation(A;L1;L2)


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  permutation: permutation(T;L1;L2) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] top: Top
Lemmas referenced :  exists_wf int_seg_wf length_wf inject_wf equal_wf list_wf permute_list_wf permute_list_length
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis extract_by_obid isectElimination functionEquality natural_numberEquality hypothesisEquality lambdaEquality productEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry voidElimination voidEquality hyp_replacement applyLambdaEquality intEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L1,L2:A  List].    ||L1||  =  ||L2||  supposing  permutation(A;L1;L2)



Date html generated: 2019_06_20-PM-01_37_21
Last ObjectModification: 2018_08_16-PM-01_17_07

Theory : list_1


Home Index