Nuprl Lemma : bag-append-comm
∀[T:Type]. ∀[as,bs:bag(T)].  ((as + bs) = (bs + as) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-append: as + bs, 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bag: bag(T), 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bag-append: as + bs, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ
Lemmas referenced : 
quotient-member-eq, 
list_wf, 
permutation_wf, 
permutation-equiv, 
append_wf, 
permutation_functionality_wrt_permutation, 
permutation_weakening, 
append_functionality_wrt_permutation, 
permutation_inversion, 
permutation-rotate, 
bag_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
thin, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality_alt, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
equalityIstype, 
productIsType, 
sqequalBase, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].    ((as  +  bs)  =  (bs  +  as))
Date html generated:
2020_05_20-AM-08_01_29
Last ObjectModification:
2020_01_04-PM-11_16_43
Theory : bags
Home
Index