Nuprl Lemma : permutation-rotate
∀[A:Type]. ∀as,bs:A List.  permutation(A;as @ bs;bs @ as)
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2), 
append: as @ bs, 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
permutation: permutation(T;L1;L2), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
exists: ∃x:A. B[x], 
int_seg: {i..j-}, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
less_than': less_than'(a;b), 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
permute_list: (L o f), 
inject: Inj(A;B;f), 
nat: ℕ
Lemmas referenced : 
list_wf, 
lt_int_wf, 
length_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
add-member-int_seg2, 
non_neg_length, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
subtract_wf, 
add-is-int-iff, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
false_wf, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
int_seg_properties, 
int_seg_wf, 
inject_wf, 
append_wf, 
permute_list_wf, 
subtype_rel_dep_function, 
int_seg_subtype, 
le_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
length-append, 
equal-wf-T-base, 
assert_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_int_wf, 
bnot_wf, 
uiff_transitivity, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
list_extensionality, 
mklist_wf, 
length_wf_nat, 
select_wf, 
add_nat_wf, 
int_seg_subtype_nat, 
nat_wf, 
nat_properties, 
mklist_length, 
all_wf, 
squash_wf, 
true_wf, 
mklist_select, 
select_append_front, 
select_append_back, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
dependent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
addEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
int_eqEquality, 
intEquality, 
computeAll, 
imageElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
instantiate, 
independent_functionElimination, 
productEquality, 
functionExtensionality, 
applyEquality, 
imageMemberEquality, 
applyLambdaEquality, 
functionEquality
Latex:
\mforall{}[A:Type].  \mforall{}as,bs:A  List.    permutation(A;as  @  bs;bs  @  as)
Date html generated:
2017_04_17-AM-08_10_46
Last ObjectModification:
2017_02_27-PM-04_38_43
Theory : list_1
Home
Index