Nuprl Lemma : mklist_select
∀[T:Type]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[i:ℕn].  (mklist(n;f)[i] = (f i) ∈ T)
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f), 
select: L[n], 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
guard: {T}, 
less_than': less_than'(a;b), 
le: A ≤ B, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
mklist: mklist(n;f), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
select: L[n], 
nil: [], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtract: n - m, 
true: True
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
false_wf, 
int_seg_subtype, 
subtype_rel_dep_function, 
primrec-unroll, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
stuck-spread, 
base_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
not_functionality_wrt_uiff, 
assert_wf, 
decidable__lt, 
squash_wf, 
true_wf, 
select_append_front, 
mklist_wf, 
le_wf, 
subtype_rel_function, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
subtype_rel_self, 
cons_wf, 
lelt_wf, 
nil_wf, 
mklist_length, 
length_wf, 
iff_weakening_equal, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
select_append_back, 
length_of_cons_lemma, 
length_of_nil_lemma, 
subtract-add-cancel, 
select-cons-hd
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
axiomEquality, 
functionEquality, 
unionElimination, 
because_Cache, 
Error :universeIsType, 
universeEquality, 
cumulativity, 
computeAll, 
productElimination, 
isect_memberFormation, 
applyEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
promote_hyp, 
instantiate, 
imageElimination, 
dependent_set_memberEquality, 
addEquality, 
minusEquality, 
multiplyEquality, 
functionExtensionality, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[i:\mBbbN{}n].    (mklist(n;f)[i]  =  (f  i))
Date html generated:
2019_06_20-PM-01_31_32
Last ObjectModification:
2018_09_26-PM-06_08_54
Theory : list_1
Home
Index