Nuprl Lemma : bag-append-assoc
∀[as,bs,cs:Top].  ((as + bs) + cs ~ as + bs + cs)
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-append: as + bs
Lemmas referenced : 
append_assoc_sq, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[as,bs,cs:Top].    ((as  +  bs)  +  cs  \msim{}  as  +  bs  +  cs)
Date html generated:
2016_05_15-PM-02_22_12
Last ObjectModification:
2015_12_27-AM-09_55_02
Theory : bags
Home
Index