Nuprl Lemma : empty-bag_wf

[T:Type]. ({} ∈ bag(T))


Proof




Definitions occuring in Statement :  empty-bag: {} bag: bag(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T empty-bag: {} subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  nil_wf list-subtype-bag
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin voidEquality hypothesis applyEquality hypothesisEquality independent_isectElimination lambdaEquality voidElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (\{\}  \mmember{}  bag(T))



Date html generated: 2016_05_15-PM-02_21_42
Last ObjectModification: 2015_12_27-AM-09_55_23

Theory : bags


Home Index