Nuprl Lemma : list-subtype-bag
∀[A,B:Type].  (A List) ⊆r bag(B) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
bag: bag(T)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
bag: bag(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
Lemmas referenced : 
list_wf, 
permutation_wf, 
permutation-equiv, 
subtype_rel_list, 
permutation_weakening, 
quotient-member-eq, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
isect_memberFormation, 
introduction, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].    (A  List)  \msubseteq{}r  bag(B)  supposing  A  \msubseteq{}r  B
Date html generated:
2016_05_15-PM-02_21_29
Last ObjectModification:
2015_12_27-AM-09_55_29
Theory : bags
Home
Index