Nuprl Lemma : list-subtype-bag

[A,B:Type].  (A List) ⊆bag(B) supposing A ⊆B


Proof




Definitions occuring in Statement :  bag: bag(T) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] bag: bag(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q
Lemmas referenced :  list_wf permutation_wf permutation-equiv subtype_rel_list permutation_weakening quotient-member-eq subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality independent_isectElimination sqequalRule dependent_functionElimination because_Cache isect_memberFormation introduction independent_functionElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].    (A  List)  \msubseteq{}r  bag(B)  supposing  A  \msubseteq{}r  B



Date html generated: 2016_05_15-PM-02_21_29
Last ObjectModification: 2015_12_27-AM-09_55_29

Theory : bags


Home Index