Step * 1 1 of Lemma bag-partitions-cons


1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. X
5. bag(X)
6. bag-no-repeats(bag(X) × bag(X);bag-partitions(eq;x.b))
⊢ bag-no-repeats(bag(X) × bag(X);bag-map(λp.<x.fst(p), snd(p)>;[p∈bag-partitions(eq;b)|((#x in snd(p)) =z 0)]))
BY
((InstLemma `bag-map-no-repeats` [⌜bag(X) × bag(X)⌝;⌜bag(X) × bag(X)⌝]⋅ THENA Auto) THEN BHyp -1  THEN Auto) }

1
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. X
5. bag(X)
6. bag-no-repeats(bag(X) × bag(X);bag-partitions(eq;x.b))
7. ∀[f:(bag(X) × bag(X)) ⟶ (bag(X) × bag(X))]. ∀[bs:bag(bag(X) × bag(X))].
     uiff(bag-no-repeats(bag(X) × bag(X);bag-map(f;bs));bag-no-repeats(bag(X) × bag(X);bs)) 
     supposing Inj(bag(X) × bag(X);bag(X) × bag(X);f)
⊢ Inj(bag(X) × bag(X);bag(X) × bag(X);λp.<x.fst(p), snd(p)>)

2
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. X
5. bag(X)
6. bag-no-repeats(bag(X) × bag(X);bag-partitions(eq;x.b))
7. ∀[f:(bag(X) × bag(X)) ⟶ (bag(X) × bag(X))]. ∀[bs:bag(bag(X) × bag(X))].
     uiff(bag-no-repeats(bag(X) × bag(X);bag-map(f;bs));bag-no-repeats(bag(X) × bag(X);bs)) 
     supposing Inj(bag(X) × bag(X);bag(X) × bag(X);f)
⊢ bag-no-repeats(bag(X) × bag(X);[p∈bag-partitions(eq;b)|((#x in snd(p)) =z 0)])


Latex:


Latex:

1.  X  :  Type
2.  valueall-type(X)
3.  eq  :  EqDecider(X)
4.  x  :  X
5.  b  :  bag(X)
6.  bag-no-repeats(bag(X)  \mtimes{}  bag(X);bag-partitions(eq;x.b))
\mvdash{}  bag-no-repeats(bag(X)  \mtimes{}  bag(X);bag-map(\mlambda{}p.<x.fst(p),  snd(p)>
                                                                  [p\mmember{}bag-partitions(eq;b)|((\#x  in  snd(p))  =\msubz{}  0)]))


By


Latex:
((InstLemma  `bag-map-no-repeats`  [\mkleeneopen{}bag(X)  \mtimes{}  bag(X)\mkleeneclose{};\mkleeneopen{}bag(X)  \mtimes{}  bag(X)\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  BHyp  -1 
  THEN  Auto)




Home Index