Step
*
1
of Lemma
W-type-ext
1. A : Type
2. ∀x,y:A. Dec(x = y ∈ A)
3. B : A ⟶ Type
4. a : A
5. x1 : B[a] ⟶ co-W(A;a.B[a])
6. ∀p:ℕ ⟶ a:A ⟶ (B[a]?). W-bars(<a, x1>;p)
7. b : B[a]
8. p : ℕ ⟶ a:A ⟶ (B[a]?)@i
9. eq : EqDecider(A)
⊢ W-bars(x1 b;p)
BY
{ ((InstHyp [⌜λn.if (n =z 0) then λz.if eq z a then inl b else inr ⋅ fi else p (n - 1) fi ⌝] (-4)⋅ THENA Auto)
THEN RepeatFor 2 (ParallelLast)
THEN ExRepD
THEN TACTIC:CaseNat 0 `n')⋅ }
1
1. A : Type
2. ∀x,y:A. Dec(x = y ∈ A)
3. B : A ⟶ Type
4. a : A
5. x1 : B[a] ⟶ co-W(A;a.B[a])
6. ∀p:ℕ ⟶ a:A ⟶ (B[a]?). W-bars(<a, x1>;p)
7. b : B[a]
8. p : ℕ ⟶ a:A ⟶ (B[a]?)@i
9. eq : EqDecider(A)
10. n : ℕ
11. ↑isr(W-select(<a, x1>;map(λn.if (n =z 0) then λz.if eq z a then inl b else inr ⋅ fi else p (n - 1) fi ;upto(n))))
12. n = 0 ∈ ℤ
⊢ ∃n:ℕ. (↑isr(W-select(x1 b;map(p;upto(n)))))
2
1. A : Type
2. ∀x,y:A. Dec(x = y ∈ A)
3. B : A ⟶ Type
4. a : A
5. x1 : B[a] ⟶ co-W(A;a.B[a])
6. ∀p:ℕ ⟶ a:A ⟶ (B[a]?). W-bars(<a, x1>;p)
7. b : B[a]
8. p : ℕ ⟶ a:A ⟶ (B[a]?)@i
9. eq : EqDecider(A)
10. n : ℕ
11. ↑isr(W-select(<a, x1>;map(λn.if (n =z 0) then λz.if eq z a then inl b else inr ⋅ fi else p (n - 1) fi ;upto(n))))
12. ¬(n = 0 ∈ ℤ)
⊢ ∃n:ℕ. (↑isr(W-select(x1 b;map(p;upto(n)))))
Latex:
Latex:
1. A : Type
2. \mforall{}x,y:A. Dec(x = y)
3. B : A {}\mrightarrow{} Type
4. a : A
5. x1 : B[a] {}\mrightarrow{} co-W(A;a.B[a])
6. \mforall{}p:\mBbbN{} {}\mrightarrow{} a:A {}\mrightarrow{} (B[a]?). W-bars(<a, x1>p)
7. b : B[a]
8. p : \mBbbN{} {}\mrightarrow{} a:A {}\mrightarrow{} (B[a]?)@i
9. eq : EqDecider(A)
\mvdash{} W-bars(x1 b;p)
By
Latex:
((InstHyp [\mkleeneopen{}\mlambda{}n.if (n =\msubz{} 0) then \mlambda{}z.if eq z a then inl b else inr \mcdot{} fi else p (n - 1) fi \mkleeneclose{}] (-4)\mcdot{}
THENA Auto
)
THEN RepeatFor 2 (ParallelLast)
THEN ExRepD
THEN TACTIC:CaseNat 0 `n')\mcdot{}
Home
Index