Nuprl Definition : wfd-tree
wfd-tree(A) ==  {w:co-w(A)| ∀p:ℕ ⟶ A. w-bars(w;p)} 
Wellformedness Lemmas : 
wfd-tree_wf
Definitions occuring in Statement : 
w-bars: w-bars(w;p)
, 
co-w: co-w(A)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions occuring in definition : 
set: {x:A| B[x]} 
, 
co-w: co-w(A)
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
nat: ℕ
, 
w-bars: w-bars(w;p)
FDL editor aliases : 
wfd-tree2
Latex:
wfd-tree(A)  ==    \{w:co-w(A)|  \mforall{}p:\mBbbN{}  {}\mrightarrow{}  A.  w-bars(w;p)\} 
Date html generated:
2016_05_15-PM-10_05_49
Last ObjectModification:
2015_09_23-AM-08_22_12
Theory : bar!induction
Home
Index