Nuprl Definition : wfd-tree

wfd-tree(A) ==  {w:co-w(A)| ∀p:ℕ ⟶ A. w-bars(w;p)} 



Wellformedness Lemmas :  wfd-tree_wf
Definitions occuring in Statement :  w-bars: w-bars(w;p) co-w: co-w(A) nat: all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions occuring in definition :  set: {x:A| B[x]}  co-w: co-w(A) all: x:A. B[x] function: x:A ⟶ B[x] nat: w-bars: w-bars(w;p)
FDL editor aliases :  wfd-tree2

Latex:
wfd-tree(A)  ==    \{w:co-w(A)|  \mforall{}p:\mBbbN{}  {}\mrightarrow{}  A.  w-bars(w;p)\} 



Date html generated: 2016_05_15-PM-10_05_49
Last ObjectModification: 2015_09_23-AM-08_22_12

Theory : bar!induction


Home Index