Nuprl Lemma : wfd-tree_wf
∀[T:Type]. (wfd-tree(T) ∈ Type)
Proof
Definitions occuring in Statement : 
wfd-tree: wfd-tree(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
wfd-tree: wfd-tree(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
W_wf, 
bool_wf, 
ifthenelse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
instantiate, 
hypothesisEquality, 
universeEquality, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  (wfd-tree(T)  \mmember{}  Type)
Date html generated:
2016_05_14-AM-06_17_47
Last ObjectModification:
2015_12_26-PM-00_03_26
Theory : co-recursion
Home
Index