Nuprl Lemma : wfd-tree_wf

[T:Type]. (wfd-tree(T) ∈ Type)


Proof




Definitions occuring in Statement :  wfd-tree: wfd-tree(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T wfd-tree: wfd-tree(T) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  W_wf bool_wf ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality instantiate hypothesisEquality universeEquality voidEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  (wfd-tree(T)  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_17_47
Last ObjectModification: 2015_12_26-PM-00_03_26

Theory : co-recursion


Home Index