Nuprl Lemma : W_wf
∀[A:Type]. ∀[B:A ⟶ Type]. (W(A;a.B[a]) ∈ Type)
Proof
Definitions occuring in Statement :
W: W(A;a.B[a])
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
W: W(A;a.B[a])
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
Lemmas referenced :
param-W_wf,
unit_wf2,
it_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
applyEquality,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
lambdaEquality,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
cumulativity,
universeEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. (W(A;a.B[a]) \mmember{} Type)
Date html generated:
2016_05_14-AM-06_15_00
Last ObjectModification:
2015_12_26-PM-00_05_14
Theory : co-recursion
Home
Index